/** Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2008, Luke Benstead. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ cc.kmQuaternion = function (x, y, z, w) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = w || 0; }; ///< Returns pOut, sets pOut to the conjugate of pIn cc.kmQuaternionConjugate = function (pOut, pIn) { pOut.x = -pIn.x; pOut.y = -pIn.y; pOut.z = -pIn.z; pOut.w = pIn.w; return pOut; }; ///< Returns the dot product of the 2 quaternions cc.kmQuaternionDot = function (q1, q2) { // A dot B = B dot A = AtBt + AxBx + AyBy + AzBz return (q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z); }; ///< Returns the exponential of the quaternion cc.kmQuaternionExp = function (pOut, pIn) { //TODO not implement //cc.assert(0); return pOut; }; ///< Makes the passed quaternion an identity quaternion cc.kmQuaternionIdentity = function (pOut) { pOut.x = 0.0; pOut.y = 0.0; pOut.z = 0.0; pOut.w = 1.0; return pOut; }; ///< Returns the inverse of the passed Quaternion cc.kmQuaternionInverse = function (pOut, pIn) { var l = cc.kmQuaternionLength(pIn); var tmp = new cc.kmQuaternion(); if (Math.abs(l) > cc.kmEpsilon) { pOut.x = 0.0; pOut.y = 0.0; pOut.z = 0.0; pOut.w = 0.0; return pOut; } ///Get the conjugute and divide by the length cc.kmQuaternionScale(pOut, cc.kmQuaternionConjugate(tmp, pIn), 1.0 / l); return pOut; }; ///< Returns true if the quaternion is an identity quaternion cc.kmQuaternionIsIdentity = function (pIn) { return (pIn.x == 0.0 && pIn.y == 0.0 && pIn.z == 0.0 && pIn.w == 1.0); }; ///< Returns the length of the quaternion cc.kmQuaternionLength = function (pIn) { return Math.sqrt(cc.kmQuaternionLengthSq(pIn)); }; ///< Returns the length of the quaternion squared (prevents a sqrt) cc.kmQuaternionLengthSq = function (pIn) { return pIn.x * pIn.x + pIn.y * pIn.y + pIn.z * pIn.z + pIn.w * pIn.w; }; ///< Returns the natural logarithm cc.kmQuaternionLn = function (pOut, pIn) { /* A unit quaternion, is defined by: Q == (cos(theta), sin(theta) * v) where |v| = 1 The natural logarithm of Q is, ln(Q) = (0, theta * v) */ //assert(0); //TODO not implement return pOut; }; ///< Multiplies 2 quaternions together cc.kmQuaternionMultiply = function (pOut, q1, q2) { pOut.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z; pOut.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y; pOut.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z; pOut.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x; return pOut; }; ///< Normalizes a quaternion cc.kmQuaternionNormalize = function (pOut, pIn) { var length = cc.kmQuaternionLength(pIn); if(Math.abs(length) <= cc.kmEpsilon) throw "cc.kmQuaternionNormalize(): pIn is an invalid value"; cc.kmQuaternionScale(pOut, pIn, 1.0 / length); return pOut; }; ///< Rotates a quaternion around an axis cc.kmQuaternionRotationAxis = function (pOut, pV, angle) { var rad = angle * 0.5; var scale = Math.sin(rad); pOut.w = Math.cos(rad); pOut.x = pV.x * scale; pOut.y = pV.y * scale; pOut.z = pV.z * scale; return pOut; }; ///< Creates a quaternion from a rotation matrix cc.kmQuaternionRotationMatrix = function (pOut, pIn) { /* Note: The OpenGL matrices are transposed from the description below taken from the Matrix and Quaternion FAQ if ( mat[0] > mat[5] && mat[0] > mat[10] ) { // Column 0: S = sqrt( 1.0 + mat[0] - mat[5] - mat[10] ) * 2; X = 0.25 * S; Y = (mat[4] + mat[1] ) / S; Z = (mat[2] + mat[8] ) / S; W = (mat[9] - mat[6] ) / S; } else if ( mat[5] > mat[10] ) { // Column 1: S = sqrt( 1.0 + mat[5] - mat[0] - mat[10] ) * 2; X = (mat[4] + mat[1] ) / S; Y = 0.25 * S; Z = (mat[9] + mat[6] ) / S; W = (mat[2] - mat[8] ) / S; } else { // Column 2: S = sqrt( 1.0 + mat[10] - mat[0] - mat[5] ) * 2; X = (mat[2] + mat[8] ) / S; Y = (mat[9] + mat[6] ) / S; Z = 0.25 * S; W = (mat[4] - mat[1] ) / S; } */ var x, y, z, w; var m4x4 = []; var scale = 0.0; var diagonal = 0.0; if (!pIn) { return null; } /* 0 3 6 1 4 7 2 5 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15*/ m4x4[0] = pIn.mat[0]; m4x4[1] = pIn.mat[3]; m4x4[2] = pIn.mat[6]; m4x4[4] = pIn.mat[1]; m4x4[5] = pIn.mat[4]; m4x4[6] = pIn.mat[7]; m4x4[8] = pIn.mat[2]; m4x4[9] = pIn.mat[5]; m4x4[10] = pIn.mat[8]; m4x4[15] = 1; var pMatrix = m4x4[0]; diagonal = pMatrix[0] + pMatrix[5] + pMatrix[10] + 1; if (diagonal > cc.kmEpsilon) { // Calculate the scale of the diagonal scale = Math.sqrt(diagonal) * 2; // Calculate the x, y, x and w of the quaternion through the respective equation x = ( pMatrix[9] - pMatrix[6] ) / scale; y = ( pMatrix[2] - pMatrix[8] ) / scale; z = ( pMatrix[4] - pMatrix[1] ) / scale; w = 0.25 * scale; } else { // If the first element of the diagonal is the greatest value if (pMatrix[0] > pMatrix[5] && pMatrix[0] > pMatrix[10]) { // Find the scale according to the first element, and double that value scale = Math.sqrt(1.0 + pMatrix[0] - pMatrix[5] - pMatrix[10]) * 2.0; // Calculate the x, y, x and w of the quaternion through the respective equation x = 0.25 * scale; y = (pMatrix[4] + pMatrix[1] ) / scale; z = (pMatrix[2] + pMatrix[8] ) / scale; w = (pMatrix[9] - pMatrix[6] ) / scale; } // Else if the second element of the diagonal is the greatest value else if (pMatrix[5] > pMatrix[10]) { // Find the scale according to the second element, and double that value scale = Math.sqrt(1.0 + pMatrix[5] - pMatrix[0] - pMatrix[10]) * 2.0; // Calculate the x, y, x and w of the quaternion through the respective equation x = (pMatrix[4] + pMatrix[1] ) / scale; y = 0.25 * scale; z = (pMatrix[9] + pMatrix[6] ) / scale; w = (pMatrix[2] - pMatrix[8] ) / scale; } else { // Else the third element of the diagonal is the greatest value // Find the scale according to the third element, and double that value scale = Math.sqrt(1.0 + pMatrix[10] - pMatrix[0] - pMatrix[5]) * 2.0; // Calculate the x, y, x and w of the quaternion through the respective equation x = (pMatrix[2] + pMatrix[8] ) / scale; y = (pMatrix[9] + pMatrix[6] ) / scale; z = 0.25 * scale; w = (pMatrix[4] - pMatrix[1] ) / scale; } } pOut.x = x; pOut.y = y; pOut.z = z; pOut.w = w; return pOut; }; ///< Create a quaternion from yaw, pitch and roll cc.kmQuaternionRotationYawPitchRoll = function (pOut, yaw, pitch, roll) { var ex, ey, ez; // temp half euler angles var cr, cp, cy, sr, sp, sy, cpcy, spsy; // temp vars in roll,pitch yaw ex = cc.kmDegreesToRadians(pitch) / 2.0; // convert to rads and half them ey = cc.kmDegreesToRadians(yaw) / 2.0; ez = cc.kmDegreesToRadians(roll) / 2.0; cr = Math.cos(ex); cp = Math.cos(ey); cy = Math.cos(ez); sr = Math.sin(ex); sp = Math.sin(ey); sy = Math.sin(ez); cpcy = cp * cy; spsy = sp * sy; pOut.w = cr * cpcy + sr * spsy; pOut.x = sr * cpcy - cr * spsy; pOut.y = cr * sp * cy + sr * cp * sy; pOut.z = cr * cp * sy - sr * sp * cy; cc.kmQuaternionNormalize(pOut, pOut); return pOut; }; ///< Interpolate between 2 quaternions cc.kmQuaternionSlerp = function (pOut, q1, q2, t) { /*float CosTheta = Q0.DotProd(Q1); float Theta = acosf(CosTheta); float SinTheta = sqrtf(1.0f-CosTheta*CosTheta); float Sin_T_Theta = sinf(T*Theta)/SinTheta; float Sin_OneMinusT_Theta = sinf((1.0f-T)*Theta)/SinTheta; Quaternion Result = Q0*Sin_OneMinusT_Theta; Result += (Q1*Sin_T_Theta); return Result;*/ if (q1.x == q2.x && q1.y == q2.y && q1.z == q2.z && q1.w == q2.w) { pOut.x = q1.x; pOut.y = q1.y; pOut.z = q1.z; pOut.w = q1.w; return pOut; } var ct = cc.kmQuaternionDot(q1, q2); var theta = Math.acos(ct); var st = Math.sqrt(1.0 - cc.kmSQR(ct)); var stt = Math.sin(t * theta) / st; var somt = Math.sin((1.0 - t) * theta) / st; var temp = new cc.kmQuaternion(), temp2 = new cc.kmQuaternion(); cc.kmQuaternionScale(temp, q1, somt); cc.kmQuaternionScale(temp2, q2, stt); cc.kmQuaternionAdd(pOut, temp, temp2); return pOut; }; ///< Get the axis and angle of rotation from a quaternion cc.kmQuaternionToAxisAngle = function (pIn, pAxis, pAngle) { var tempAngle; // temp angle var scale; // temp vars tempAngle = Math.acos(pIn.w); scale = Math.sqrt(cc.kmSQR(pIn.x) + cc.kmSQR(pIn.y) + cc.kmSQR(pIn.z)); if (((scale > -cc.kmEpsilon) && scale < cc.kmEpsilon) || (scale < 2 * cc.kmPI + cc.kmEpsilon && scale > 2 * cc.kmPI - cc.kmEpsilon)) { // angle is 0 or 360 so just simply set axis to 0,0,1 with angle 0 pAngle = 0.0; pAxis.x = 0.0; pAxis.y = 0.0; pAxis.z = 1.0; } else { pAngle = tempAngle * 2.0; // angle in radians pAxis.x = pIn.x / scale; pAxis.y = pIn.y / scale; pAxis.z = pIn.z / scale; cc.kmVec3Normalize(pAxis, pAxis); } }; ///< Scale a quaternion cc.kmQuaternionScale = function (pOut, pIn, s) { pOut.x = pIn.x * s; pOut.y = pIn.y * s; pOut.z = pIn.z * s; pOut.w = pIn.w * s; return pOut; }; cc.kmQuaternionAssign = function (pOut, pIn) { pOut.x = pIn.x; pOut.y = pIn.y; pOut.z = pIn.z; pOut.w = pIn.w; return pOut; }; cc.kmQuaternionAdd = function (pOut, pQ1, pQ2) { pOut.x = pQ1.x + pQ2.x; pOut.y = pQ1.y + pQ2.y; pOut.z = pQ1.z + pQ2.z; pOut.w = pQ1.w + pQ2.w; return pOut; }; /** Adapted from the OGRE engine! Gets the shortest arc quaternion to rotate this vector to the destination vector. @remarks If you call this with a dest vector that is close to the inverse of this vector, we will rotate 180 degrees around the 'fallbackAxis' (if specified, or a generated axis if not) since in this case ANY axis of rotation is valid. */ cc.kmQuaternionRotationBetweenVec3 = function (pOut, vec1, vec2, fallback) { var v1 = new cc.kmVec3(), v2 = new cc.kmVec3(); var a; cc.kmVec3Assign(v1, vec1); cc.kmVec3Assign(v2, vec2); cc.kmVec3Normalize(v1, v1); cc.kmVec3Normalize(v2, v2); a = cc.kmVec3Dot(v1, v2); if (a >= 1.0) { cc.kmQuaternionIdentity(pOut); return pOut; } if (a < (1e-6 - 1.0)) { if (Math.abs(cc.kmVec3LengthSq(fallback)) < cc.kmEpsilon) { cc.kmQuaternionRotationAxis(pOut, fallback, cc.kmPI); } else { var axis = new cc.kmVec3(); var X = new cc.kmVec3(); X.x = 1.0; X.y = 0.0; X.z = 0.0; cc.kmVec3Cross(axis, X, vec1); //If axis is zero if (Math.abs(cc.kmVec3LengthSq(axis)) < cc.kmEpsilon) { var Y = new cc.kmVec3(); Y.x = 0.0; Y.y = 1.0; Y.z = 0.0; cc.kmVec3Cross(axis, Y, vec1); } cc.kmVec3Normalize(axis, axis); cc.kmQuaternionRotationAxis(pOut, axis, cc.kmPI); } } else { var s = Math.sqrt((1 + a) * 2); var invs = 1 / s; var c = new cc.kmVec3(); cc.kmVec3Cross(c, v1, v2); pOut.x = c.x * invs; pOut.y = c.y * invs; pOut.z = c.z * invs; pOut.w = s * 0.5; cc.kmQuaternionNormalize(pOut, pOut); } return pOut; }; cc.kmQuaternionMultiplyVec3 = function (pOut, q, v) { var uv = new cc.kmVec3(), uuv = new cc.kmVec3(), qvec = new cc.kmVec3(); qvec.x = q.x; qvec.y = q.y; qvec.z = q.z; cc.kmVec3Cross(uv, qvec, v); cc.kmVec3Cross(uuv, qvec, uv); cc.kmVec3Scale(uv, uv, (2.0 * q.w)); cc.kmVec3Scale(uuv, uuv, 2.0); cc.kmVec3Add(pOut, v, uv); cc.kmVec3Add(pOut, pOut, uuv); return pOut; };